Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
ArXiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699162

RESUMEN

Förster resonance energy transfer (FRET) is a quantum mechanical phenomenon involving the non-radiative transfer of energy between coupled electric dipoles. Due to the strong dependence of FRET on the distance between the dipoles, it is frequently used as a "molecular ruler" in biology, chemistry, and physics. This is done by placing dipolar molecules called dyes on molecules of interest. In time-resolved confocal single-molecule FRET (smFRET) experiments, the joint distribution of the FRET efficiency and the donor fluorescence lifetime can reveal underlying molecular conformational dynamics via deviation from their theoretical Förster relationship. This deviation is referred to as a dynamic shift. Quantifying the dynamic shift caused by the motion of the fluorescent dyes is essential to decoupling the dynamics of the studied molecules and the dyes. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based on first physics principles and proper dye linker chemistry to match accessible volumes predicted by molecular dynamics simulations. By simulating the dyes' stochastic translational and rotational dynamics, we show that the observed dynamic shift can largely be attributed to the mutual orientational dynamics of the electric dipole moments associated with the dyes, not their accessible volume.

2.
Cell Rep Phys Sci ; 5(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38585429

RESUMEN

Transcription factors (TFs) regulate gene expression by binding to specific DNA sequences and gating access to genes. Even when the binding of TFs and their cofactors to DNA is reversible, indicating a reversible control of gene expression, there is little knowledge about the molecular effect DNA has on TFs. Using single-molecule multiparameter fluorescence spectroscopy, molecular dynamics simulations, and biochemical assays, we find that the monomeric form of the forkhead (FKH) domain of the human FoxP1 behaves as a disordered protein and increases its folded population when it dimerizes. Notably, DNA binding promotes a disordered FKH dimer bound to DNA, negatively controlling the stability of the dimeric FoxP1:DNA complex. The DNA-mediated reversible regulation on FKH dimers suggests that FoxP1-dependent gene suppression is unstable, and it must require the presence of other dimerization domains or cofactors to revert the negative impact exerted by the DNA.

4.
iScience ; 26(7): 107228, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485372

RESUMEN

Transcription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules. The FoxP subfamily of transcription factors in humans is unique because they can form heterotypic interactions without DNA. However, it is unclear how they form heterodimers and how DNA binding affects their function. We used computational and experimental methods to study the structural changes in FoxP1's DNA-binding domain when it forms a heterodimer with FoxP2. We found that FoxP1 has complex and diverse conformational dynamics, transitioning between compact and extended states. Surprisingly, DNA binding increases the flexibility of FoxP1, contrary to the typical folding-upon-binding mechanism. In addition, we observed a 3-fold increase in the rate of heterodimerization after FoxP1 binds to DNA. These findings emphasize the importance of structural flexibility in promoting heterodimerization to form transcriptional complexes.

5.
bioRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461453

RESUMEN

While full-spectrum flow cytometry has increased antibody-based multiplexing, yet further increases remain potentially impactful. We recently proposed how fluorescence Multiplexing using Spectral Imaging and Combinatorics (MuSIC) could do so using tandem dyes and an oligo-based antibody labeling method. In this work, we found that such labeled antibodies had significantly lower signal intensity than conventionally-labeled antibodies in human cell experiments. To improve signal intensity, we tested moving the fluorophores from the original external (ext.) 5' or 3' end-labeled orientation to internal (int.) fluorophore modifications. Cell-free spectrophotometer measurements showed a ~6-fold signal intensity increase of the new int. configuration compared to the previous ext. configuration. Time-resolved fluorescence spectroscopy and fluorescence correlation spectroscopy showed that ~3-fold brightness difference is due to static quenching. Spectral flow cytometry experiments using peripheral blood mononuclear cells stained with anti-CD8 antibodies showed that int. MuSIC probe-labeled antibodies have signal intensity equal to or greater than conventionally-labeled antibodies with similar estimated proportion of CD8+ lymphocytes. The antibody labeling approach is general and can be broadly applied to many biological and diagnostic applications.

6.
ACS Synth Biol ; 12(8): 2290-2300, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463472

RESUMEN

Systematic, genome-scale genetic screens have been instrumental for elucidating genotype-phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Mamíferos , Animales , Humanos , Clonación Molecular
7.
J Chem Phys ; 158(19)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37184020

RESUMEN

Transcription factors are multidomain proteins with specific DNA binding and regulatory domains. In the human FoxP subfamily (FoxP1, FoxP2, FoxP3, and FoxP4) of transcription factors, a 90 residue-long disordered region links a Leucine Zipper (ZIP)-known to form coiled-coil dimers-and a Forkhead (FKH) domain-known to form domain swapping dimers. We used replica exchange discrete molecular dynamics simulations, single-molecule fluorescence experiments, and other biophysical tools to understand how domain tethering in FoxP1 impacts dimerization at ZIP and FKH domains and how DNA binding allosterically regulates their dimerization. We found that domain tethering promotes FoxP1 dimerization but inhibits a FKH domain-swapped structure. Furthermore, our findings indicate that the linker mediates the mutual organization and dynamics of ZIP and FKH domains, forming closed and open states with and without interdomain contacts, thus highlighting the role of the linkers in multidomain proteins. Finally, we found that DNA allosterically promotes structural changes that decrease the dimerization propensity of FoxP1. We postulate that, upon DNA binding, the interdomain linker plays a crucial role in the gene regulatory function of FoxP1.


Asunto(s)
ADN , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dimerización , ADN/química , Dominios Proteicos , Regulación de la Expresión Génica , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
8.
J Phys Chem B ; 127(4): 884-898, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693159

RESUMEN

The structural flexibility of proteins is crucial for their functions. Many experimental and computational approaches can probe protein dynamics across a range of time and length-scales. Integrative approaches synthesize the complementary outputs of these techniques and provide a comprehensive view of the dynamic conformational space of proteins, including the functionally relevant limiting conformational states and transition pathways between them. Here, we introduce an integrative paradigm to model the conformational states of multidomain proteins. As a model system, we use the first two tandem PDZ domains of postsynaptic density protein 95. First, we utilize available sequence information collected from genomic databases to identify potential amino acid interactions in the PDZ1-2 tandem that underlie modeling of the functionally relevant conformations maintained through evolution. This was accomplished through combination of coarse-grained structural modeling with outputs from direct coupling analysis measuring amino acid coevolution, a hybrid approach called SBM+DCA. We recapitulated five distinct, experimentally derived PDZ1-2 tandem conformations. In addition, SBM+DCA unveiled an unidentified, twisted conformation of the PDZ1-2 tandem. Finally, we implemented an integrative framework for the design of single-molecule Förster resonance energy transfer (smFRET) experiments incorporating the outputs of SBM+DCA with simulated FRET observables. This resulting FRET network is designed to mutually resolve the predicted limiting state conformations through global analysis. Using simulated FRET observables, we demonstrate that structural modeling with the newly designed FRET network is expected to outperform a previously used empirical FRET network at resolving all states simultaneously. Integrative approaches to experimental design have the potential to provide a new level of detail in characterizing the evolutionarily conserved conformational landscapes of proteins, and thus new insights into functional relevance of protein dynamics in biological function.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proyectos de Investigación , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/química , Conformación Molecular , Aminoácidos , Conformación Proteica
9.
Elife ; 112022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069777

RESUMEN

The scaffold protein PSD-95 links postsynaptic receptors to sites of presynaptic neurotransmitter release. Flexible linkers between folded domains in PSD-95 enable a dynamic supertertiary structure. Interdomain interactions within the PSG supramodule, formed by PDZ3, SH3, and Guanylate Kinase domains, regulate PSD-95 activity. Here we combined discrete molecular dynamics and single molecule Förster resonance energy transfer (FRET) to characterize the PSG supramodule, with time resolution spanning picoseconds to seconds. We used a FRET network to measure distances in full-length PSD-95 and model the conformational ensemble. We found that PDZ3 samples two conformational basins, which we confirmed with disulfide mapping. To understand effects on activity, we measured binding of the synaptic adhesion protein neuroligin. We found that PSD-95 bound neuroligin well at physiological pH while truncated PDZ3 bound poorly. Our hybrid structural models reveal how the supertertiary context of PDZ3 enables recognition of this critical synaptic ligand.


Asunto(s)
Disulfuros , Factores de Transcripción , Ligandos , Homólogo 4 de la Proteína Discs Large/química , Guanilato-Quinasas , Neurotransmisores , Unión Proteica , Sitios de Unión
10.
Nat Commun ; 13(1): 5402, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104339

RESUMEN

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.


Asunto(s)
Benchmarking , Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Modelos Teóricos
11.
Rev. Soc. Argent. Diabetes ; 56(suple. 2): 1-1, may. - ago. 2022.
Artículo en Español | LILACS, BINACIS | ID: biblio-1396055

RESUMEN

"No llevar otro propósito que el bien y la salud a los enfermos" fue la base del juramento que Hipócrates trasmitió a sus discípulos. Recordarlo nos hace necesariamente reflexionar sobre el rol de los médicos para mantener este principio ético que, a más de dos milenios de vigencia, continúa siendo el motor que impulsa nuestra práctica cotidiana. Asistimos a una era extraordinaria con el desarrollo exponencial de nuevos conocimientos. Se estima que la humanidad cada 2 años duplica la información y probablemente estos lapsos se reduzcan a solo 11 horas en las próximas décadas, de acuerdo a algunos pronósticos.


Asunto(s)
Juramento Hipocrático , Pacientes , Medicina
12.
J Chem Phys ; 157(3): 031501, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868918

RESUMEN

Single-molecule Förster Resonance Energy Transfer (smFRET) experiments are ideally suited to resolve the structural dynamics of biomolecules. A significant challenge to date is capturing and quantifying the exchange between multiple conformational states, mainly when these dynamics occur on the sub-millisecond timescale. Many methods for quantitative analysis are challenged if more than two states are involved, and the appropriate choice of the number of states in the kinetic network is difficult. An additional complication arises if dynamically active molecules coexist with pseudo-static molecules in similar conformational states with undistinguishable Förster Resonance Energy Transfer (FRET) efficiencies. To address these problems, we developed a quantitative integrative analysis framework that combines the information from FRET-lines that relate average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms, fluorescence decays obtained by time-correlated single-photon-counting, photon distribution analysis of the intensities, and fluorescence correlation spectroscopy. Individually, these methodologies provide ambiguous results for the characterization of dynamics in complex kinetic networks. However, the global analysis approach enables accurate determination of the number of states, their kinetic connectivity, the transition rate constants, and species fractions. To challenge the potential of smFRET experiments for studying multi-state kinetic networks, we apply our integrative framework using a set of synthetic data for three-state systems with different kinetic connectivity and exchange rates. Our methodology paves the way toward an integrated analysis of multiparameter smFRET experiments that spans all dimensions of the experimental data. Finally, we propose a workflow for the analysis and show examples that demonstrate the usefulness of this toolkit for dynamic structural biology.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación Molecular , Fotones , Espectrometría de Fluorescencia
13.
J Chem Phys ; 156(14): 141501, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35428384

RESUMEN

Conformational dynamics of biomolecules are of fundamental importance for their function. Single-molecule studies of Förster Resonance Energy Transfer (smFRET) between a tethered donor and acceptor dye pair are a powerful tool to investigate the structure and dynamics of labeled molecules. However, capturing and quantifying conformational dynamics in intensity-based smFRET experiments remains challenging when the dynamics occur on the sub-millisecond timescale. The method of multiparameter fluorescence detection addresses this challenge by simultaneously registering fluorescence intensities and lifetimes of the donor and acceptor. Together, two FRET observables, the donor fluorescence lifetime τD and the intensity-based FRET efficiency E, inform on the width of the FRET efficiency distribution as a characteristic fingerprint for conformational dynamics. We present a general framework for analyzing dynamics that relates average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms. We present parametric relations of these observables for interpreting the location of FRET populations in E-τD diagrams, called FRET-lines. To facilitate the analysis of complex exchange equilibria, FRET-lines serve as reference curves for a graphical interpretation of experimental data to (i) identify conformational states, (ii) resolve their dynamic connectivity, (iii) compare different kinetic models, and (iv) infer polymer properties of unfolded or intrinsically disordered proteins. For a simplified graphical analysis of complex kinetic networks, we derive a moment-based representation of the experimental data that decouples the motion of the fluorescence labels from the conformational dynamics of the biomolecule. Importantly, FRET-lines facilitate exploring complex dynamic models via easily computed experimental observables. We provide extensive computational tools to facilitate applying FRET-lines.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación Molecular
14.
Arch Cardiol Mex ; 92(2): 165-173, 2022 04 04.
Artículo en Español | MEDLINE | ID: mdl-34260578

RESUMEN

Objectives: Kidney disease is one of the microvascular complications of diabetes mellitus (DM) with little research and a strong association with cardiovascular disease (CVD). The objective of this study is to characterize the prevalence of kidney disease in a population of patients with type 2 diabetes who attend outpatient control by cardiology, to evaluate its degree of investigation and whether its presence impacts on the achievement of therapeutic goals and use of antidiabetics with cardiovascular and kidney protective effect. Methods: Cross-sectional, observational and multicenter study, carried out in 44 centers in Argentina between May and July 2019. Results: A population with 693 patients with DM was included. The prevalence of CVD was 47.5% (329 patients) and that of microvascular disease was 42.3%. Albuminuria was evaluated only in 46.2% of the patients and was significantly higher in the group with renal impairment (RI). The presence of CVD in patients with RI was greater than in those without RI (64.8% vs. 42.2%; p = 0.0001). The presence of albuminuria was associated with a higher prevalence of CVD. The achievement of therapeutic goals was scarce and no differences were evidenced based on the presence of RI, except for the LDL goal. Low prescription of antidiabetic drugs with proven cardiovascular and kidney benefit was observed. Conclusions: This study highlights the importance of the active search for kidney disease in patients with DM, exposing the low scope of therapeutic goals and the prescription of antidiabetic drugs with cardiovascular and kidney benefit.


Objetivos: La enfermedad renal es una de las complicaciones microvasculares de la diabetes mellitus (DM) con escasa pesquisa y gran relación con enfermedad cardiovascular (ECV). El objetivo de este trabajo es caracterizar la prevalencia de enfermedad renal en una población de pacientes con diabetes tipo 2 que concurren a control ambulatorio por cardiología, determinar su grado de pesquisa y su posible efecto en el alcance de los objetivos terapéuticos y en el uso de los antidiabéticos con efecto protector cardiorrenal. Métodos: Estudio de corte transversal, observacional y multicéntrico realizado en 44 centros de Argentina entre mayo y julio de 2019. Resultados: Se incluyó a 693 pacientes con una prevalencia de ECV establecida de 47.5% (329 pacientes) y de enfermedad microvascular de 42.3%. La albuminuria se valoró sólo en el 46.2% de los pacientes y fue significativamente mayor en el grupo con IR. La ECV en pacientes con IR fue mayor que en aquéllos sin IR (64.8% vs. 42.2%; p = 0.0001). La presencia de albuminuria se acompañó de mayor prevalencia de ECV. El alcance de los objetivos terapéuticos fue escaso y no se reconocieron diferencias en función de la IR, a excepción del objetivo de LDL. Se observó baja prescripción de fármacos antidiabéticos con probado beneficio cardiorrenal. Conclusiones: El trabajo resalta la importancia de la búsqueda activa de la enfermedad renal en pacientes con diabetes, lo que revela el bajo alcance de los objetivos terapéuticos y la prescripción de fármacos antidiabéticos con beneficio cardiorrenal.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Albuminuria , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Hipoglucemiantes , Estudios Retrospectivos
15.
Cell Rep Phys Sci ; 2(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34888535

RESUMEN

SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels. The rxDMD simulations systematically characterize the coil-to-molten globular transition and reconstruct structural ensemble consistent with prior ensemble experiments. Label-based experiments using Förster resonance energy transfer and double electron-electron resonance further probe the conformational dynamics of SNAP-25. Agreements between simulations and experiments under both ensemble and single-molecule conditions allow us to assign specific helix-coil transitions in SNAP-25 that occur in submillisecond timescales and potentially play a vital role in forming the SNARE complex. We expect that this integrative approach may help further our understanding of IDPs.

16.
J Phys Chem B ; 125(37): 10404-10418, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34506140

RESUMEN

Out-of-equilibrium processes are ubiquitous across living organisms and all structural hierarchies of life. At the molecular scale, out-of-equilibrium processes (for example, enzyme catalysis, gene regulation, and motor protein functions) cause biological macromolecules to sample an ensemble of conformations over a wide range of time scales. Quantifying and conceptualizing the structure-dynamics to function relationship is challenging because continuously evolving multidimensional energy landscapes are necessary to describe nonequilibrium biological processes in biological macromolecules. In this perspective, we explore the challenges associated with state-of-the-art experimental techniques to understanding biological macromolecular function. We argue that it is time to revisit how we probe and model functional out-of-equilibrium biomolecular dynamics. We suggest that developing integrated single-molecule multiparametric force-fluorescence instruments and using advanced molecular dynamics simulations to study out-of-equilibrium biomolecules will provide a path towards understanding the principles of and mechanisms behind the structure-dynamics to function paradigm in biological macromolecules.


Asunto(s)
Simulación de Dinámica Molecular , Nanotecnología , Biofisica , Sustancias Macromoleculares
17.
RNA ; 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863818

RESUMEN

Thiamine pyrophosphate (TPP) riboswitches regulate thiamine metabolism by inhibiting the translation of enzymes essential to thiamine synthesis pathways upon binding to thiamine pyrophosphate in cells across all domains of life. Recent work on the Arabidopsis thaliana TPP riboswitch suggests a multi-step TPP binding process involving multiple riboswitch configurational ensembles and that Mg2+ dependence underlies the mechanism of TPP recognition and subsequent transition to the expression-inhibiting state of the aptamer domain followed by changes in the expression platform. However, details of the relationship between TPP riboswitch conformational changes and interactions with TPP and Mg2+ ¬¬in the aptamer domain constituting this mechanism are unknown. Therefore, we integrated single-molecule multiparameter fluorescence and force spectroscopy with atomistic molecular dynamics simulations and found that conformational transitions within the aptamer domain's sensor helices associated with TPP and Mg2+ ligand binding occurred between at least five different ensembles on timescales ranging from µs to ms. These dynamics are orders of magnitude faster than the 10 second-timescale folding kinetics associated with expression-state switching in the switch sequence. Together, our results show that a TPP and Mg2+ dependent mechanism determines dynamic configurational state ensemble switching of the aptamer domain's sensor helices that regulates the stability of the switch helix, which ultimately may lead to the expression-inhibiting state of the riboswitch. Additionally, we propose that two pathways exist for ligand recognition and that this mechanism underlies a kinetic rheostat-like behavior of the Arabidopsis thaliana TPP riboswitch.

19.
Curr Opin Struct Biol ; 66: 129-138, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33246199

RESUMEN

Evidence regarding protein structure and function manifest the imperative role that dynamics play in proteins, underlining reconsideration of the unanimated sequence-to-structure-to-function paradigm. Structural dynamics portray a heterogeneous energy landscape described by conformational ensembles where each structural representation can be responsible for unique functions or enable macromolecular assemblies. Using the human p27/Cdk2/Cyclin A ternary complex as an example, we highlight the vital role of intramolecular and intermolecular dynamics for target recognition, binding, and inhibition as a critical modulator of cell division. Rapidly sampling configurations is critical for the population of different conformational ensembles encoding functional roles. To garner this knowledge, we present how the integration of (sub)ensemble and single-molecule fluorescence spectroscopy with molecular dynamic simulations can characterize structural dynamics linking the heterogeneous ensembles to function. The incorporation of dynamics into the sequence-to-structure-to-function paradigm promises to assist in tackling various challenges, including understanding the formation and regulation of mesoscale assemblies inside cells.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Humanos , Conformación Molecular , Conformación Proteica , Imagen Individual de Molécula
20.
Arch Cardiol Mex ; 2020 12 01.
Artículo en Esperanto | MEDLINE | ID: mdl-33262540

RESUMEN

Objetivo: Evaluar el impacto del aislamiento social, preventivo y obligatorio sobre al aumento de peso, el nivel de actividad física, la adherencia al tratamiento y la inmunización antigripal y antineumocócica en pacientes con diabetes tipo 2 (DM2). Método: Se realizó un seguimiento telefónico de pacientes con DM2 luego de al menos 100 días de comienzo del aislamiento. Se compararon dos regiones agrupadas en relación con el número de casos: región 1, más de 150 casos/100, 000 habitantes, y región 2, más de 150 casos/100,000 habitantes. Resultados: Se contactaron 454 pacientes con DM2. El 42% reportaron incremento de peso y el 7% refirió haber aumentado más de 5 kg. En relación con la actividad física, se observó un promedio más bajo en la región 1 (367.5 [0-5698] MET/sem) que en la región 2 (720 [0-7066] MET/sem) (p = 0.0009). La adherencia al tratamiento farmacológico disminuyó en forma global, pero aumentó en las zonas de mayor circulación viral. Por otra parte, hubo un incremento de vacunación antigripal y antineumocócica, alcanzando coberturas del 80% y el 70%, respectivamente. Conclusiones: En una población de alto riesgo cardiovascular y con una prevalencia de sobrepeso/obesidad elevada, el aislamiento social, preventivo y obligatorio se asoció con ganancia de peso y menos actividad física, lo que podría resultar deletéreo sobre la salud cardiovascular de los pacientes con DM2. Por otro lado, se observan algunos aspectos positivos, como el aumento de las inmunizaciones y el incremento de la adherencia en las zonas más afectadas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...